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This paper contains temporally and spatially resolved flow visualization and DPIV
measurements characterizing the frequency–amplitude response and three-dimensional
vortex structure of a circular cylinder mounted like an inverted pendulum. Two
circular cylinders were examined in this investigation. Both were 2.54 cm in diameter
and ∼140 cm long with low mass ratios, m∗ = 0.65 and 1.90, and mass–damping
ratios, m∗ζ = 0.038 and 0.103, respectively. Frequency–amplitude response analysis
was done with the lighter cylinder while detailed wake structure visualization and
measurements were done using the slightly higher-mass-ratio cylinder. Experiments
were conducted over the Reynolds number range 1900 � Re � 6800 corresponding
to a reduced velocity range of 3.7 � U ∗ � 9.6. Detailed examination of the upper
branch of the synchronization regime permitted, for the first time, the identification
of short-time deviations in cylinder oscillation and vortex-shedding frequencies that
give rise to beating behaviour. That is, while long-time averages of cylinder oscillation
and vortex-shedding frequencies are identical, i.e. synchronized, it is shown that there
is a slight mismatch between these frequencies over much shorter periods when the
cylinder exhibits quasi-periodic beating. Data are also presented which show that
vortex strength is also modulated from one cylinder oscillation to the next. Physical
arguments are presented to explain both the origins of beating as well as why
the quasi-periodicity of the beating envelopes becomes irregular; it is believed that
this result may be generalized to a broader class of fluid–structure interactions. In
addition, observations of strong vertical flows associated with the Kármán vortices
developing 2–3 diameters downstream of the cylinder are presented. It is hypothesized
that these three-dimensionalities result from both the inverted pendulum motion as
well as free-surface effects.

1. Introduction
1.1. Frequency–amplitude response of an inverted pendulum

Vortex-induced-vibrations (VIV) of elastically mounted cylinders, i.e. cylinders
constrained at both ends by springs which oscillate in the cross-stream direction under
the influence of their vortex shedding, is a dynamically rich field of study. Under the
right conditions, Kármán vortices shed from the cylinder induce fluctuating lift forces
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which excite transverse oscillations. When VIV occurs, the vortex shedding frequency,
i.e. repeatable vortex patterns, is approximately equal to the oscillation frequency of
the cylinder; this has been referred to as synchronization and the range of flow speeds
for which this occurs is called the synchronization regime. For extensive reviews, see
Bearman (1984), Chen (1987), and Williamson (1996a).

Frequency and amplitude response characteristics of elastically mounted cylinders
have been well documented. There are two main response types which depend on a
mass–damping parameter, m∗ζ , where m∗ is the ratio of cylinder mass to the mass
of the fluid displaced by the cylinder and ζ is the damping ratio of the structure.
Cylinders with high m∗ζ are characterized by an amplitude response plot containing
two branches; this is known as the ‘Feng-type’ response. The amplitude response of
cylinders with low m∗ζ exhibit three distinct branches. For both low and high mass–
damping, the lower branch of the amplitude response is characterized by cylinder
oscillations at a single frequency and constant amplitude over a range of flow speeds.
This is known as the classical ‘lock-in’ regime. For high mass ratios, m∗, however,
the normalized frequency, f ∗, i.e. the oscillation frequency divided by the natural
frequency of the cylinder in water, is approximately equal to unity. For low m∗ it has
been shown that f ∗ > 1.0. See Khalak & Williamson (1999) for a complete discussion
of these parameters.

In this study, VIV associated with vertically mounted, rigid, hollow, low-mass-ratio
circular cylinders were examined. Unlike the two-dimensional elastically mounted
cylinder, however, the cylinders in this study were mounted at the bottom end with
a flexible pin with motion constrained to the cross-stream direction only. Frequency
and amplitude response characteristics of the cylinders will be shown to be virtually
identical to those for elastically mounted cylinders. Following the conventions chosen
by Khalak & Williamson (1999), two distinct branches were observed. The initial
excitation or upper branch, 3.8 <U ∗ < 7.0, where reduced velocity, U ∗ = U/fnD, is
defined in the conventional way, is characterized by vortex-shedding frequencies
different from S = 0.21. In addition, VIV is characterized by strong energetic vortices
shed very close to the cylinder and by a beating behaviour of the cylinder oscillations.
This has also been referred to as resonant synchronization.

The lower branch, occurring for 7.0 � U ∗ � 9.2, is characterized by oscillation
amplitudes and frequencies which do not vary with U ∗. In this lock-in regime, cylinder
oscillation frequency and amplitude remain constant over a wide range of flow speeds.
Flow visualization studies presented in Atsavapranee, Benaroya & Wei (1999) and
Voorhees (2002) indicated that in the classic lock-in regime, vortex shedding appeared
rather disorganized in comparison to the resonant synchronization regime. This may
be interpreted as the cylinder modulating the flow so that ‘just enough’ energy was
transferred from fluid to structure to maintain a fixed amplitude oscillation at the
natural frequency. At the end of this regime, the cylinder no longer vibrates in
response to vortex shedding until, of course, the second harmonic of the cylinder
natural frequency is approached.

1.2. Three-dimensionality in the wakes of oscillating cylinders

Even when the angle of oscillation is small, as considered by Atsavapranee et al.
(1999), and subsequently by Dong (2002) and Voorhees (2002), the local Kármán
vortex strength increases as the local oscillation amplitude grows with increasing
distance from the fixed end. Variations in vortex strength, in turn, lead to axial
pressure gradients along the Kármán vortices giving rise to axial flows away from
the fixed end. This behaviour was observed for a cylinder mounted as an inverted
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pendulum with a maximum deflection angle of only 1.5◦. For the present case, strong
vertical (i.e. axial) flows were observed even though the vertical displacement of any
point on the cylinder was <3 % of horizontal displacement. When the structure is
partially submerged in a liquid flow and pierces the free surface, the nature of the axial
flows becomes quite complex. It is not clear what impact this three-dimensionality
has on the modelling of small-amplitude VIV. Of particular interest to this study is
the reduced-order analytical modelling effort described in Benaroya & Wei (2000),
Dong (2002) and Dong, Benaroya & Wei (2004). The second focus of this paper,
then, is the existence and importance of large-scale three-dimensionality in the wake
of a freely oscillating, surface-piercing cylinder.

Three-dimensionality in the wakes of stationary and elastically mounted cylinders
has received a great deal of attention over the last twenty years, though the existence of
such flows has been noted for over half a century. In virtually all cylinder wakes, small-
scale three-dimensionality in nominally two-dimensional wakes inevitably develops
with increasing Reynolds number; see, for example Tombazis & Bearman (1997).
Williamson (1996b) carefully documented the onset of small-scale three-dimensionality
in cylinder wakes. He reported that transition occurs for 190 � Re � 250 through the
amplification and growth of spanwise instabilities. For Re > 1000, Williamson (1996a)
notes that three-dimensional structures develop which scale both on the separated
shear layers as well as on the Kármán vortices. For Re > 1200, Wei & Smith (1986)
reported that small-scale spanwise vortices, originating in the separated cylinder
boundary layers, develop spanwise waviness and realign in the stream direction.

The three-dimensionalities identified in the preceding paragraph are generally a
natural part of the transition to turbulence of cylinder wakes. That is, they do not typ-
ically affect the mean two-dimensional wake structure. There are, however, large-scale
three-dimensional phenomena, such as oblique vortex shedding, vortex dislocations,
and cellular shedding, which are a clear departure from two-dimensionality on the
mean. For more details, see Tombazis & Bearman (1997).

There are several investigations with modified cylinder geometries that have
explored controlling such large-scale three-dimensionalities. Stationary tapered
cylinders and cones have been studied by Gaster (1969, 1971). Free or forced vibrations
of such structures were experimentally examined by Techet, Hover & Triantafyllou
(1998) and Hover, Techet & Triantafyllou (1998). At low Re, Gaster (1969, 1971) found
that vortex shedding from a slightly tapered cylinder or cone occurred at frequencies
which varied (with local diameter) along the span and could lead to cellular shedding.
At higher Re, forced oscillation of a tapered cylinder was investigated by Techet
et al. (1998) using flow visualization. In addition to observing continuous Kármán
vortices along the span, a split in vortex shedding was also observed at certain flow
speeds. This split was characterized by two modes of shedding located at different
spanwise positions. This so-called hybrid mode was found to be periodic whereas
vortex dislocations, in general, were not. In a parallel study, Hover et al. (1998)
investigated uniform and tapered cylinders in free and forced vibration. By measuring
lift forces generated at each end, it was found that the tapered cylinder experienced
smoother transitions through the various flow regimes. In none of the tapered cylinder
experiments were axial flows observed.

There are two recent investigations, Fujarra et al. (2001) and Kittagawa, Fujono &
Kimura (1999), in which cylinders were pinned at one end and free at the other. Fujarra
et al. (2001) used a flexible cantilever in water over an Re range from 1000 to 2500.
The stiffness orientation in the cantilever primarily allowed transverse oscillations
over the entire synchronization regime. (Streamwise oscillations were noted at flow
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speeds beyond synchronization.) The cylinder had a low mass ratio, m∗ = 1.3, and
relatively high mass–damping, m∗ζ = 0.185. The amplitude and frequency response
had two branches and the average f ∗ during lock-in was 1.3. Kittagawa et al. (1999)
examined a rigid cantilever mounted using a leaf spring. Experiments were conducted
in a wind tunnel at high Re. In addition to VIV, the authors noted an end-cell-induced
vibration, which was caused by a vortex generated at the free end of the cylinder. It
should be noted that flow visualizations were not performed in either cantilever study
and, thus, spanwise flows in the wake of the cylinder could not be observed.

A common observation from a variety of free-surface turbulence investigations
is that a free surface causes lateral spreading of near-surface turbulence and that
turbulence interactions with a free surface are anisotropic. Logory, Hirsa & Anthony
(1996) investigated the turbulent wake of a flat plate and observed that the near-
surface wake width was found to double compared to the wake at depth. In addition,
wake three-dimensionality was observed to markedly increase near the free surface.
Grega et al. (1995) investigated turbulence in a ‘mixed boundary corner’ formed
by a solid wall and free surface and observed that free-surface currents effectively
thicken the boundary layer at the free surface. Walker Leighton & Garza-Rios
(1996) conducted a numerical simulation of initially homogeneous and isotropic
turbulence near a free surface and examined anisotropy approaching the free surface.
They determined that dissipation became zero and mean pressure increased on
approaching the free surface. Hsu et al. (2000) experimentally confirmed anisotropy
of the dissipation in the mixed boundary corner. Warncke-Lang & Gharib (2000)
examined free-surfac effects in the wake of a stationary cylinder for both clean
and contaminated surfaces. They found that surfactants alter surface shear stress
causing otherwise surface-normal Kármán vortices to reorient themselves in a surface
parallel direction.

1.3. Objectives

Figure 1 contains two 360 s time traces of instantaneous cylinder deflection. The
non-dimensional ordinate, y/D =0, is centred on the cylinder rest position. These
measurements were obtained using the signal from a Banner Omni-beam OASBD
analog photoelectric sensor sampled at 100 Hz. If one looks at short segments of the
traces, one can immediately see a richness in the oscillations that is ordinarily masked
by averaging. In particular, one can clearly see irregularities in oscillation amplitude;
for different parts of the traces, the cylinder appears to undergo quasi-periodic
beating. Four examples of quasi-periodic beating have been identified in figure 1 by
dotted rectangular boxes. After a few beat periods, however, the amplitude becomes
either irregular or even constant for several more cycles. Examples of regions where
the amplitude remains approximately constant have been identified in figure 1 using
ovals.

While frequency–amplitude response plots are extremely helpful in characterizing
different oscillation regimes, understanding and modelling the irregular oscillations
highlighted in figure 1 is problematic. Indeed, long-time-averaged frequency and
amplitude response data, shown in § 3, indicate that the cylinder oscillation frequency
and vortex shedding frequency are identical. This leads to what will be shown as
the incorrect conclusion that beating must be the result of phase shifts between the
two frequencies. The critical new element of this study is the ability to conditionally
sample fluid–structure interactions during quasi-periodic beating. The results of this
analysis show that frequency variations play a key role in this phenomenon.
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Figure 1. Two three-minute time traces showing instantaneous cylinder position vs. time
for the cylinder undergoing vortex-induced-vibrations in the upper branch or synchronization
regime. Note the irregularity of the amplitude modulations. Examples of quasi-periodic beating
and constant amplitude are indicated.

This paper builds on earlier work by, e.g. Benaroya & Wei (2000), Dong (2002) and
Dong et al. (2004), focused on developing reduced-order analytical models to describe
quasi-periodic beating like that indicated in figure 1. Data from those studies revealed
new insights into the coupling between vortex shedding and cylinder oscillations in
the upper branch of the frequency-amplitude response plots. These insights will be
further developed in this paper.

The second focus of this investigation is on understanding the nature of axial flows
in the wake of a surface-piercing, rigid circular cylinder mounted as an inverted
pendulum. While one can nominally treat this problem as an elastically mounted
cylinder, even for the very small angular deflections of the leaf spring, there was
evidence of three-dimensionality in the flow. In particular, early flow visualization
studies indicated that dye injected into the wake at the cylinder mid-height would
frequently move to or from the free-surface in very energetic ways. One could quickly
reason that the upflows were the result of axial flows set up by vorticity gradients
in the Kármán vortices. As one moves up toward the free surface, away from the
pinned end, the cylinder amplitude increases. Consequently, one would expect the
local vorticity in the Kármán vortex to also increase approaching the free-surface.
This, in turn, would result in a pumping of fluid up the axes of the Kármán vortices
up toward the free-surface.

The surprising observation was that there were also numerous instances where the
axial flows were down away from the free-surface. Was this a free-surface effect?
Or were there additional mechanisms at work. In the light of the irregularities in
the cylinder oscillation amplitudes, the second focus of this paper is the question
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of whether or not there is a relationship between the beating phenomena and axial
flows.

1.4. A note on coordinates

Experiments and results are presented relative to a right-hand Cartesian coordinate
system whose origin is defined by the axis of the cylinder at rest, and the free-surface.
The x-axis corresponds to the mean stream direction; the y-direction is cross-stream
and parallel to the free surface; and the z-axis is aligned opposite to gravity, i.e.
vertically upward from the free-surface. In this manner, all distances below the
surface are negative.

2. Experimental apparatus and methodologies
2.1. Flow facility

Experiments were conducted in the free-surface water tunnel described in Smith
(1992) and Grega et al. (1995). The facility consists of an upstream end tank and
settling chamber, contraction, test section, downstream end tank, and two pumps.
The test section is 610 cm long, 122 cm deep, and 57.2 cm wide. The walls and floor
are glass, allowing maximum optical access. The maximum flow rate is 1500 lmin−1,
corresponding to a free-stream speed of ∼30 cm s−1 when the test section is full. The
free-stream velocity was found to be uniform to within ±2% across the cross-section
and turbulence intensities are less than 0.1% of the free-stream speed.

Under steady-state operation, the free-surface in the test section was effectively free
of contaminants. This is because the rate at which surfactant diffuses to the free-
surface is much slower than the rate at which water passes through the test section.
Proof of a clean free-surface in the test section is the existence of a Reynolds ridge
located 20–50 cm upstream of the exit. For further details, see Grega et al. (1995).

2.2. Cylinder overviews

The results presented in this paper are a combination of two experiments with two
similar, but different, circular cylinders. The primary difference between cylinders was
construction material and, hence, mass ratio. One cylinder was used primarily for the
frequency and amplitude response studies while the second cylinder was used to study
three-dimensionality in the near wake.

2.2.1. The lower mass ratio (m∗ = 0.65) cylinder for frequency/amplitude response

The first cylinder was constructed from a 141 cm length of thin-walled acrylic tube,
2.54 cm in diameter. Unlike a two-dimensional elastically mounted cylinder, however,
the cylinder in this study was mounted on the test section floor of a large free-surface
water tunnel by a 0.32 cm diameter stainless-steel pin. The top, free, end of the
cylinder protruded through the free surface and was fitted with a cart assembly. The
cart consisted of a block of PVC into which two ball bearings were mounted on the
downstream face. These bearings rolled along an oiled polished steel plate mounted
on a rigid bar spanning the water tunnel test section. In this manner, the cylinder was
constrained to freely oscillate as an inverted pendulum only in the cross-stream plane.
For details of the experiment, see Dong (2002) or Dong et al. (2004). An assembly
drawing of the structure is shown in figure 2. Note that the mass of the cart with its
bearings (not shown in figure 2) was included in the cylinder mass ratio.

The mass ratio, m∗, of the cylinder (including the mass of the cart) was 0.65 and
the cylinder damping ratio, ζ , was 0.058; the mass–damping parameter, then, was
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Figure 2. Schematic drawing of the thin-walled cylinder mounted on a base plate as an
inverted pendulum using a stainless-steel pin. The cylinder was 141 cm long and 2.54 cm in
diameter. (The drawing is not to scale.) Drawing includes the water filled plug at the mid-height
used for passage of the laser sheet. The restraining cart permitting cross-stream motions only
is not shown.

0.038. The structure’s natural frequency, fn, was 0.83 Hz in air and 0.77 Hz in water.
The total moment of inertia for the entire cylinder assembly, I0, was 0.40 kgm2

and its stiffness, kT was 11.0 N m rad−1. Note that the maximum angular deflection,
θmax, was only 1.5◦. It will be shown later that Kármán vortices remain continuous
along the entire length of the cylinder, and that three-dimensional effects developed
approximately three diameters downstream of the cylinder and are strongest at the
free-surface.

2.2.2. The higher mass ratio (m∗ = 1.90) cylinder for three-dimensional flows

The second cylinder used in this investigation was constructed using four lengths
of thin-walled anodized aluminium tube rigidly connected by machined aluminium
plugs, a stainless-steel leaf spring, base plate, and guiding cart. Each tube section
was 26.7 cm long with 0.04 cm wall thickness. The plugs were 10.2 cm long with
centres bored to permit passage of two 0.48 cm diameter dye injection tubes. One plug
was specially manufactured with two 2.54 cm long × 0.10 cm wide dye injection slots
aligned in the axial direction and spaced 60◦ apart. The other two were ‘dummies’
whose masses were made to match that of the injection plug. In this manner, the
dye injection plug could be interchanged with either dummy plug, allowing flow
visualization at different positions along the cylinder. Two o-rings were used both the
ends of each plug to ensure rigidity of the cylinder assembly and to keep water from
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leaking into the cylinder. The overall length and diameter of this cylinder was 142 cm
and 2.54 cm, respectively.

The cylinder was mounted on a 1.27 cm thick base plate on the test section floor
using a stainless-steel leaf spring. By aligning the spring in the flow direction, VIV
was restricted to the transverse direction. The overall spring dimensions were 5.08 cm
high, 2.54 cm long (in the stream direction), and 0.10 cm thick. The spring was
clamped at both ends, thereby keeping the effective length to 2.54 cm. For small
deflections, the leaf spring is assumed to act as a linear torsional spring with a spring
constant, k, of 38.8 Nm rad−1. The free end of the cylinder extended through the
free-surface and was fitted with a guiding cart to further restrict cylinder oscillations
to the transverse direction. The cart described in § 2.2.1 and shown in figure 2 was
used on this cylinder as well. The mass ratio for this cylinder was 1.90. The natural
frequency of the structure in water, fn, was 1.09 s−1. The ratio of mechanical to
critical damping, ζ , was 0.054, and the mass–damping parameter, m∗ζ , was 0.103. For
the flow conditions studied in the investigation, the maximum VIV amplitude at the
free end of the cylinder was approximately one cylinder diameter. This corresponds
to a 1.5◦ maximum deflection angle.

2.3. Cylinder position measurements

Records of instantaneous cylinder position for either cylinder were measured using
a Banner Omni-beam OASBD analog photoelectric sensor. The sensor operated on
the principle of measuring the reflected intensity of an 880 nm infrared source beam.
A small white reflecting surface was attached to the top of the cylinder to improve
signal quality. Output from the position sensor was transferred to a PC through a
12-bit analog to digital A/D board. Cylinder position data were captured at 300 Hz,
twenty times faster than the digital particle image velocimetry (DPIV) sampling rate.
This ensured clean accurate position information each time flow data were acquired.

2.4. Flow visualization

Two-colour LIF and food colour flow visualization studies were conducted as part of
this investigation. For both techniques, dye was injected through the two dye injection
slots described in § 2.2. The dye injection slots were ±30◦ on either side of the mean
forward stagnation line of the cylinder at rest. For the laser-induced fluorescence
(LIF) experiments, fluorescein (green) and rhodamine (red-orange) dyes were used.
Flow was illuminated using a Coherent Innova 70-5 argon-ion laser.

Red and blue food colour was also used to mark the flow. For those studies,
the water tunnel was back lit using a floodlamp directed through a diffuse surface.
All visualizations were recorded with a Sony Professional 3-CCD camera on S-VHS
videotape.

2.5. The DPIV measurement system

An in-house DPIV system was used to obtain velocity and vorticity measurements
from the flow field. Details may be found in Hsu (2000). Flow was illuminated using
a dual head Nd:YAG laser (New Wave Gemini PIV 120-15) which produced two
laser pulses at 1/15 s intervals with output energies of 120 mJ per pulse. Timing
was controlled by a Stanford Research Systems DG535 digital delay/pulse generator
operating at 15 Hz. A Kodak Megaplus ES 1.0 digital video camera with 1008 × 1018
pixel resolution was used to capture video records of seeded flow. The camera output
was connected to an Imaging Technology IC-PCI image-capture board located on a
300 MHz Pentium PC. This permitted capture of 450 consecutive video frames, i.e.
225 DPIV vector fields, corresponding to ∼15 s temporally resolved records of the
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Figure 3. Dimensionless cylinder oscillation frequency, fo/fn vs. reduced velocity, U/fnD.
Squares denote measurements taken for incrementally increasing speeds while diamonds
indicate data taken while decreasing through the speed range.

flow. Flow was seeded using 13 μm silver-coated hollow glass spheres with specific
gravity of 1.6.

For measurements in (x, y)-planes, horizontal laser light sheets were deflected
upstream using a front surface mirror mounted inside the test section at 45◦ to the
flow. The video camera was placed under the test section looking upward, normal to
the laser sheet. Measurements were also made in cross stream, (y, z)-planes. For these
studies, vertical laser sheets were passed directly through the test section sidewalls
and the 45◦ mirror in the test section was used to reflect the end-view out to the video
camera.

Regardless of measurement plane, the camera output was connected to an Imaging
Technology IC-PCI image-capture board located on a 300 MHz Pentium PC. This
permitted capture of 450 consecutive video frames, i.e. 225 DPIV vector fields,
corresponding to 22.5 s temporally resolved records of the flow.

DPIV vector fields were computed using an in-house DPIV software package
featuring a two-step correlation process. Large interrogation windows were first used
to obtain a ‘coarse’ particle displacement field. Displacements computed in the coarse
correlation stage were then used as input to a ‘fine’ correlation stage, in which
smaller interrogation windows were appropriately displaced to obtain an accurate
‘fine’ displacement field. Four times over-sampling was used. A detailed description
of the software, its calibration, and accuracy is provided in Hsu (2000) and Grega
et al. (2002). Because a variety of DPIV measurements were made for different flow
conditions, details of specific parameters, such as time between laser pulses and vector
spacing, are provided with the corresponding presentation of results.

3. Frequency and amplitude response characteristics of the inverted pendula
Frequency and amplitude response characteristics of the lower-mass-ratio cylinder

are shown in figures 3 and 4, respectively. The difference in mass ratio is sufficiently
small that the response characteristics of the higher-mass-ratio cylinder were virtually
identical to those shown in figures 3 and 4. Measurements were made at the cylinder
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Figure 4. Maximum amplitude response characteristics of the acrylic cylinder undergoing
vortex-induced-vibrations. See caption of figure 2 for definition of plot symbols.

mid-height, ∼70 cm above the floor of the water tunnel. The square symbols denote
data taken while incrementing upward through the velocity range. Diamonds denote
measurements made while decrementing downward through the speed range. This
provided insight into any hysteresis that may be present in the system.

It is readily observed from figures 3 and 4 that the cylinder response characteristics
were virtually identical to those for elastically mounted cylinders. Following
conventions chosen by Khalak & Williamson (1999), two distinct branches are
observed. The initial excitation or upper branch, 3.8 <U ∗ < 7.0, is characterized
by vortex-shedding frequencies different from S =0.21; in this case, S ≈ 0.18. In
addition, the interaction is characterized by strong energetic vortices shed very close
to the cylinder and by a beating behaviour of the cylinder oscillations. This has also
been referred to as resonant synchronization. The maximum amplitude in the resonant
synchronization regime occurred at U ∗ ≈ 5.4.

The lower branch, occurring for 7.0 � U ∗ � 9.2, is characterized by oscillation
amplitudes and frequencies which do not vary with U ∗. In this lock-in regime, cylinder
oscillation frequency and amplitude remained constant at f ∗ ≈ 1.2 over a wide range
of flow speeds. Flow visualization studies presented in Atsavapranee et al. (1999) and
Voorhees (2002) indicated that in the classic lock-in regime, vortex shedding appeared
rather disorganized in comparison to the resonant synchronization regime. This may
be interpreted as the cylinder modulating the flow so that just enough energy was
transferred from fluid to structure to maintain a fixed amplitude oscillation at the
natural frequency. At the end of this regime, U ∗ > 9.2, the cylinder no longer vibrates
in response to vortex shedding (until, of course, the second harmonic of the cylinder
natural frequency is approached).

Figures 3 and 4 are also consistent with two recent investigations, Fujarra et al.
(2001) and Kittagawa et al. (1999), in which cylinders were pinned at one end
and free at the other. Fujarra et al. (2001) used a flexible cantilever in water
for 1000 � Re � 2500. The stiffness orientation in the cantilever primarily allowed
transverse oscillations over the entire synchronization regime. (Streamwise oscillations
were noted at flow speeds beyond synchronization.) Their cylinder had a low mass
ratio, m∗ =1.3, and relatively high mass–damping, m∗ζ = 0.185. The amplitude and
frequency response had two branches and the average f ∗ during lock-in was 1.3.
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4. Results and discussion: quasi-periodic beating phenomenon
As noted previously, data for this investigation were originally obtained as part of a

reduced-order analytical modelling effort. This entailed phase-averaging time-resolved
DPIV records containing the cylinder beating phenomenon. In order to do this, the
Re = 2300 case in the resonant synchronization regime or upper branch was chosen
for detailed measurement and analysis. This corresponds to the diamond-shaped data
point at U/fnD ≈ 4.4 and a/D ≈ 0.4 in figure 4.

This particular case was selected because of the relatively large oscillation
amplitudes combined with the relative regularity of the beating. At lower reduced
velocities or Reynolds numbers, the beating phenomenon becomes quite regular, but
the oscillation amplitudes can be quite small. Between beat cycles, the amplitudes
can be negligibly small. At higher reduced velocities, well-defined, quasi-periodic
beat envelopes were relatively rare. One finds solitary beat patterns embedded in an
otherwise irregular oscillation signal. An example of this type of irregular behaviour
is visible in the first half of the second trace in figure 1; clearly there is nothing
repeatable to focus on as ‘characteristic’ in that signal. The Re = 2300 case presents a
good compromise where the oscillation amplitudes are large and repeated beat cycles
occur fairly often. An hypothesis for why the beating phenomenon becomes more
irregular with increasing reduced velocity is presented in the following section.

An ensemble of fifty individual DPIV velocity field sequences was assembled to
examine the quasi-periodic beating phenomenon. Each sequence consisted of 225
consecutive velocity fields taken at 1/10 s intervals, or ∼ 1/13 of a cylinder oscillation
period, in a horizontal plane perpendicular to the axis of symmetry of the cylinder at
rest. The location of the measurement plane was ∼70 cm above the floor of the test
section, coinciding with the amplitude measurements. The spacing between vectors
was 0.19 cm corresponding to λ/D = 0.074. The total duration of each sample was
22.5 s, or ∼17.3 cylinder oscillation periods.

One can clearly see from the cylinder position time traces in figure 1 that some
criterion needed to be applied when capturing data sets. This was done by monitoring
the output of the cylinder position sensor with a digital oscilloscope. After careful
study of the cylinder oscillations, it became possible to anticipate when a beat-like
event was about to occur. At those times, DPIV video images as well as the cylinder
position sensor signal would be captured and stored to computer. The position sensor
signal would also be monitored on the oscilloscope to see if the cylinder indeed
underwent a beat cycle. The criterion for keeping the data set were that there had to
be a symmetric beat envelope consisting of at least ten individual cylinder oscillations.
In addition, the largest oscillation at the centre of the beat envelope had to be ∼20%
larger than the oscillations at the beginning and end of the envelope. To remove the
effects of small-scale fluctuations, e.g. shedding of Bloor vortices (for details, see Bloor
1964 or Wei & Smith 1986), phase averaging was done by centring on the peak of a
beat cycle. For further details, please see Dong (2002).

4.1. On the mismatch between vortex shedding and cylinder oscillation frequencies

The first indication of differences between vortex shedding and cylinder oscillation
frequencies was found during examination of phase-averaged time traces of individual
terms in the mechanical energy transport equation, Dong et al. (2004). Two terms in
the energy equation were particularly relevant to this discussion. These are the time
rate of change of mechanical energy of the cylinder, ∂(KE + PE)cylinder/∂t , and the flux
of fluid kinetic energy across the boundaries of a fixed control volume surrounding
the cylinder (including some fluid as well). The mathematical expression for this latter



228 A. Voorhees, P. Dong, P. Atsavapranee, H. Benaroya and T. Wei

4

3

2

1

1 2 3 4 5
x/D

y
D

Figure 5. Instantaneous DPIV vector field showing flow around the acrylic cylinder. Flow is
left to right. The control volume used for computing fluid kinetic energy flux calculations is
shown as a black rectangle.

term is ∫ 1
2
ρV 2(V · dA), and is denoted here as (KE)fluid flux. A sample instantaneous

vector field with the control volume used in this analysis is shown in figure 5.
The significance of these terms is that the time derivative of the cylinder kinetic

energy will, obviously, be correlated to the cylinder motion. In fact, a time trace of
∂(KE + PE)cylinder∂t should be exactly 180◦ out of phase with the cylinder position
signal. The fluid kinetic energy flux term turned out to be a good metric for tracking
the vortex shedding frequency. Oscillations in the time-dependent (KE)fluid flux term
were correlated with the passage of a Kármán vortex across the downstream face of
the control volume. For details of this, see Dong et al. (2004).

Spectra computed from phase-averaged time traces of these two energy transport
terms are presented in figure 6. As noted earlier, data acquisition was conditionally
sampled to capture complete beat cycles during quasi-periodic beating. The key
feature of figure 6 is that the spectral peaks of the cylinder energy derivative and the
fluid kinetic energy flux terms do not coincide; there is a slight mismatch between the
two peaks of approximately 0.1 Hz. It is important to reiterate that this frequency
difference can be detected only within the beat period. If one takes long time averages
of vortex shedding and cylinder oscillation frequencies, as has typically been done,
the frequencies are and have been found to be identical. The physical implications of
this will be addressed in § 4.2 and § 4.3.

To independently validate the observed frequency difference, space–time correlation
plots, shown in figures 7 and 8, were developed. Figures 7 and 8 each contain the
overlay of two plots. The first is the phase-averaged cylinder position vs. time trace,
shown as a solid white sinusoidally varying signal. Observe the characteristic beating
envelope with a maximum at the centre of the trace. The same phase-averaged position
vs. time trace appears in both figures. Superimposed on the cylinder position trace
are space–time plots showing the passage of phase-averaged axial vorticity, Kármán
vortices, past a fixed streamwise station as a function of time. The abscissa in the
plot is time, t , while the ordinate is spanwise position, y. To generate these plots,
the distribution of axial vorticity, ωz, across the cylinder wake at a fixed location,
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Figure 6. Power spectra of time rate of change of cylinder energy, ∂(KE + PE)cylinder∂t
(diamonds), and fluid kinetic energy flux, (KE)fluid flux (squares). Only the portions of the
spectra with non-zero frequency components are shown.
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Figure 7. Space–time contour plots showing the correlation between vortex shedding and
cylinder oscillations: cross-stream position vs. dimensional time. Plots were obtained using
spanwise distributions of vertical vorticity at x/D = 2.3 (see figure 5) at successive times
through a phase-averaged beat cycle. The cylinder position vs. time trace is superimposed as
a solid white line.

x/D ≈ 2.3 for figure 7 and x/D ≈ 3.0 for figure 8, was extracted from each phase-
averaged vector field in the beat cycle. This yielded time-dependent functions, ωz(y, t),
plotted as shaded contours.

The purpose of figures 7 and 8 is to study the relation between Kármán vortex
shedding and cylinder oscillations. It is possible to compare relative spacing between
peaks in the cylinder position vs. time trace and the corresponding centre of vorticity.
In principle, if a Kármán vortex were shed before the cylinder reaches its point
of local maximum deflection, the vorticity contours will be located to the left, i.e.
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Figure 8. As figure 7 but at x/D = 3.0.

at an earlier time, than the local maximum in the cylinder position vs. time trace.
Similarly, if the Kármán vortices shed at the same time or after the cylinder reaches
its peak deflection, vorticity contours and position vs. time trace would coincide or
the vorticity would lag the peak in cylinder position, respectively.

In reality, this is too simplistic because there is a delay as the forming Kármán
vortex advects downstream away from the cylinder. Without a specific criterion for
when a vortex ‘sheds’ from the cylinder, the exact phase relationship between shedding
and oscillation cannot be quantified. One can, however, get a sense of where vortices
detach from the cylinder near wake by comparing iso-vorticity contours in figures 7
and 8. In figure 7, one can see that the vorticity contours associated with the Kármán
vortices form sinusoidal waveforms across the entire plot. Closer examination reveals
small closed contours close to the extrema of the cylinder position vs. time trace. While
this may be interpreted as the time at which vortices are shed from the cylinder, this
would have a high degree of subjectivity associated with it.

Figure 8, on the other hand, clearly shows closed vorticity contours. This indicates
that coherent Kármán vortices have become detached from the cylinder. To precisely
determine from figure 8 the time at which the vortices begin to move downstream
from the cylinder, one would need to know the vortex advection speed.

To verify the difference between vortex shedding and cylinder oscillation frequencies,
one can use the data in figure 8 to measure the time delay between a peak in the
cylinder position trace and the centre of the corresponding vortex. This was done for
each of the first six cylinder oscillations appearing in figure 8. In particular, the focus
is on the clockwise, negative-sign vortices appearing in the upper half of the figure. For
each oscillation, the extreme point of cylinder deflection and the approximate center of
the Kármán vortex shed during that oscillation cycle were located. For the latter, the
approximate centre of the largest and nearest vorticity contour was identified. Using
magnification tools in the plotting program, the time between these two events was
measured. It was found that the time delay between maximum cylinder deflection and
passage of the vortex centre increased from 0.41 s for the first oscillation to 0.48 s for
the sixth oscillation. Measurements made on other oscillation peaks demonstrate that
the trend is consistent across the entire phase-averaged beat cycle. Thus, once again,
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it is seen that the vortex shedding frequency is lower than the cylinder oscillation
frequency during a beat cycle.

4.2. Effects of modulated cylinder amplitude on Kármán vortex strength

As a result of the preceding analyses, one can conclude that the quasi-periodic beating
phenomenon arises, at least in part, from differences between vortex shedding and
cylinder oscillation frequencies. It is noteworthy that the frequency difference is of
the order on 0.1 Hz and the beat period is of the order of 10 s. While the temporal
resolution of the measurements limits the precision of this observation, it is consistent
with both the spectra in figure 6 and the beat period observed in the long-time
cylinder position vs. time traces shown in figure 1.

The existence of beating raises the question of whether a modulation of Kármán
vortex strength accompanies the cylinder amplitude modulations. To address this,
temporal variations in vortex strength were calculated from the DPIV data. This
was done by defining a rectangular control volume which moved with the oscillating
cylinder. A variety of different sized and positioned control volumes were tried. The
one that seemed to produce the cleanest and most consistent results was a contour
which was centred on the cylinder in the cross-stream direction, with its upstream
and downstream faces passing through the cylinder and 11

4
diameters downstream of

the cylinder, respectively. Using flow visualization studies, described in Atsavapranee
et al. (1999), it was determined that the Kármán vortices behind the oscillating
cylinder formed immediately downstream of the cylinder. This was due to the fact
that, because of the oscillatory motion, the flow relative to the cylinder was at an
angle to free-stream direction. Thus, placing the control volume symmetrically behind
the cylinder captured the Kármán vortex formation.

Estimates of vortex strength then could be obtained in a straightforward manner
by computing the circulation around the rectangular contour described above at each
time step in the DPIV sequence. For the upstream face of the control volume, the
local velocity was prescribed to be the instantaneous speed of the cylinder. This is,
of course, a very approximate calculation. There is not a built-in assessment of what
is actually contained inside the control volume at any instant of time. However, it
is an objective calculation providing, therefore, at least a qualitative sense of vortex
strength as a function of time through the phase-averaged beat cycle.

Comparisons between cylinder oscillations and temporal variations in phase-
averaged vortex strength, i.e. circulation, are shown in figure 9. The phase-averaged
cylinder oscillation signal appears as a dotted line while the circulation signal is a solid
black line. It is interesting to note that while the cylinder position beat envelope is
symmetric about t = 5.0 s, the circulation signal does not exhibit the same symmetry.
Rather, vortex strength appears greatest one or two oscillation cycles before the
largest cylinder deflection. On average, then, the Kármán vortices are stronger when
the peak cylinder oscillation amplitude is increasing than when the beating cycle
envelope is decreasing. Further, it appears that the largest cylinder deflection occurs
one to two cycles after the strongest Kármán vortex has been shed. Thus, beating
behaviour in the synchronization regime for low-mass-ratio cylinders is due not only
to a mismatch between the vortex shedding and oscillation frequencies, but also to a
modulation in Kármán vortex strength.

4.3. Thoughts on the irregularity of cylinder amplitude in the synchronization regime

The data presented in this paper, particularly the frequency results, raise an interesting
question about the irregularity of the cylinder deflection traces shown in figure 1.
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Figure 9. Comparison of vortex strength, i.e. circulation (solid black line), in the cylinder
near wake with cylinder oscillation amplitude (dotted line) as a function of time in the
phase-averaged beat cycle. Note that vortex strength is modulated, with the maximum strength
occurring 1–2 oscillations before the largest amplitude deflection.

Specifically, why does beating appear to abruptly end after a small number of beat
cycles? The remainder of this section includes thoughts and a hypothesis on the
observed irregularities.

It is well known that two harmonic oscillators with different fundamental
frequencies will combine to form a beating signal where the beat frequency is equal
to the difference of the two fundamental frequencies. That this is the case for the
vortex shedding and cylinder oscillation frequencies is readily apparent from the
phase-averaged oscillation trace, shown in figures 7–9, and the spectra of fluid kinetic
energy flux and cylinder oscillation shown in figure 6. It was noted earlier that the
difference frequency appears to be on the order of 0.1 Hz. This matches the ∼10 s
beat period observed in figure 1.

Unlike the mathematical system of two mismatched oscillators, however, there
are physical constraints on the VIV problem. That is, whereas two sine waves with
differing frequencies will go in and out of phase over long periods of time, it is
physically unrealistic for vortices, which are typically shed when the cylinder has
deflected to one side, to shed when the cylinder has deflected to the other side. This
is shown schematically in figure 10, which is a sketch of a cylinder oscillation vs. time
trace. Associated with each positive peak in the trace, there is a little schematic of
a cylinder shedding a clockwise Kármán vortex. Each cylinder schematic has been
placed on the trace at the time the vortex is shed. Cross-hairs have been drawn on
the cylinders and located on the trace to facilitate this image. Note that this is a
hypothetical picture because exact information about the precise relation between
oscillation and vortex shedding times is not known.

Figure 10, then, was constructed to illustrate the physical relation between vortex
shedding and cylinder oscillation. If both the shedding and oscillation frequencies were
the same, every vortex would be shed at the same relative time in each oscillation
cycle. However, since the vortex shedding rate is slower than the oscillation frequency
for the conditions of this experiment, one should expect that each successive vortex
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Figure 10. Cartoon showing the effects of differences between vortex shedding and cylinder
oscillation frequencies. The sinusoidal line represents a modulated cylinder oscillation trace.
Circles with cross-hairs and grey curved lines show how there will be an increasing delay in
Kármán vortex shedding relative to the local maximum in the cylinder motion if the shedding
frequency is lower than the oscillation frequency. Note that this cannot be sustained for more
than a few beat periods, depending on the magnitude of the difference frequency.

would be shed later and later in the oscillation cycle. The steadily increasing delay in
vortex shedding is illustrated in figure 10.

The logical extension of this increasing delay would be that clockwise, negative-sign
vortices would eventually be shed when the cylinder deflects in the opposite direction.
However, such a flow would be decidedly non-physical. It would necessitate roll-up
of vorticity on the wrong side of the cylinder. An alternative way of looking at this is
that the low-pressure Kármán vortex would push against the cylinder. Thus, before
this was to happen, the flow must ‘reset’ such that vortices are shed on the ‘correct’
side.

While detailed studies of the ‘correction’ process have not been made, it is
hypothesized that it occurs quite rapidly, within one or two cylinder oscillations.
There is no evidence of a corresponding quasi-periodic beating cycle during which
the vortex shedding frequency is higher than the cylinder vibration rate. Rather, the
long-time oscillation signal in figure 1 shows abrupt departures from beating after
a few beat periods. Examination of LIF flow visualization sequences also revealed
moments when an irregular looking vortex would be shed from the cylinder. Such
events, when considered on their own, would appear random and singular in nature.
However, in the light of the frequency mismatch described in § 4.1 and the implications
illustrated in figure 10, they can be interpreted as being part of this ‘correction’.

This, of course, does not mean that the cylinder would immediately return to
beating. Indeed, figure 1 reveals extended periods of time when the cylinder is not
exhibiting either classic beating behaviour or constant-amplitude oscillations. The
dynamics of how the cylinder transitions into quasi-periodic beating is an open and
probably quite complex issue.

5. Results and discussion: three-dimensionality in the cylinder wake
The second focus of this paper is three-dimensionality in the cylinder wake.

Specifically, the effects of the inverted pendulum motion on Kármán vortex shedding
and the interaction of the Kármán vortices with the free-surface are of particular
interest. As a first approach to studying this problem, two-colour LIF and food
colour flow visualization studies were conducted 6.7 cm, 37.2 cm and 67.6 cm below
the free-surface. This corresponds to z/D = −2.6, –14.6 and –26.6, respectively. For
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Figure 11. Schematic drawing showing the fourteen different DPIV measurement planes,
both orientation and location, used to quantify three-dimensionality in the cylinder wake.

the LIF studies, the fields of view were of the cylinder near wake, including the
downstream half of the cylinder, spanning ∼ 6 cylinder diameters in the stream
direction and ∼ 5 diameters in the transverse direction. Five minute video sequences
were recorded for each combination of flow speed and visualization location. The
range of Reynolds numbers, based on cylinder diameter and free-stream velocity,
extended from 2300 to 6800. Depending on flow speed, five minutes corresponded
to 280–380 vortex-shedding periods. Visualizations were conducted both increasing
and decreasing through the Reynolds number range to note any hysteresis effects.
LIF records were used to extract Kármán vortex-shedding frequency and cylinder
oscillation amplitude frequency.

Side-view food-colour visualizations provided insight into wake three-
dimensionality. Fields of view for these studies were approximately 14 and 12
diameters in the x- and z-directions, respectively. Ten minute video sequences of
VIV were recorded for five different Reynolds numbers from 3000 to 3800. One
additional case was recorded at Re= 3800 in which the cylinder was fixed at its
neutral position. Recordings were examined for the presence and nature of vertical
flows.

In addition, fourteen sets of DPIV measurements were made in both horizontal and
cross-stream planes in the cylinder near wake. A single speed was examined where the
non-dimensional reduced velocity, U ∗ =U∞fn/D, was 4.9, or Re= 3400. This was in
the synchronization regime of the cylinder response characteristics, also referred to as
the ‘upper branch’ in Khalak & Williamson (1999). A schematic drawing showing the
different measurement planes and their locations is shown in figure 11. Each rectangle
in the figure represents a measurement field typically ∼5× 5 cylinder diameters in size.
End-view measurements, horizontally centred about the mean cylinder rest position,
were made at up to four downstream positions and two distances below the free-
surface. Horizontal plan-view measurements were made at seven locations below the
free-surface.
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Nominally, fifteen individual DPIV data sets were recorded at each of the fourteen
measurement locations. Each set was 15 s in duration comprising 225 DPIV image
pairs and 4500 cylinder displacement samples. Data were conditionally captured when
the cylinder underwent quasi-periodic beating as described in § 4. In reference to this
cycle, ‘peak’ denotes the maximum amplitude and ‘trough’ or ‘neck’ refer to the
minimum amplitude. The final ensemble of DPIV sequences was selected based on
the criterion that they each contain one complete beat cycle. For these measurements,
the spacing between adjacent vectors was ∼ 0.1 cm or λ/D = 0.04.

Each individual 15 s DPIV data sequence was reduced in length to include one
beating cycle centred on the trough. This was done by locating the trough using the
position sensor signal (sampled at 300 Hz) and identifying the DPIV vector field
closest in time to the trough. Note that the temporal uncertainty associated with
considering that DPIV vector field to be located at the trough is ±0.033 s. An 11 s
DPIV sequence was then selected by including 5.5 s of data on either side of the
trough. Once each sequence had been conditionally sampled, phase averaging was
achieved by simply ensemble averaging conditionally sampled sequences. Because of
the tremendous amount of data (165 vector fields per sequence ×14 measurement
locations/orientations × 10 sequences per ensemble), only ten sequences were included
in each phase average; see Voorhees (2002) for details. The principal advantage of
phase averaging in this study was the ability to reconstruct the three-dimensional
topology of the phase-averaged Kármán vortices. This is described in the following
paragraph.

Temporally resolved, three-dimensional, phase-averaged reconstruction of Kármán
vortices was done using plan-view vorticity data, ωz, from six spanwise locations
z/D = −1.0, –2.0, –4.0, –6.0, –14.6 and –26.6. As with all other DPIV data, the
reduced velocity, U ∗, was 4.9. Vortex cores were located using an adaptive three-
dimensional feature tracking algorithm developed by Wang (1999). By setting a
vorticity threshold, regions of large vorticity could be located with the perimeter being
denoted by the threshold value. The centroid of the vortex (or region of vorticity) was
then determined using a weighting function over the entire structure based on the
position and magnitude of vorticity. A rough estimate of the uncertainty associated
with the vortex tracking was made using unaveraged velocity fields. Far from the
free-surface the root-mean-square vortex location uncertainties in the streamwise and
cross-stream directions (non-dimensionalized by cylinder diameter) were 0.12 and
0.02, respectively. Near the free-surface the r.m.s. vortex position uncertainties were
0.43 and 0.11 in the streamwise and cross-stream directions, respectively. The Kármán
vortices were reconstructed by connecting vortex cores in the spanwise direction after
first individually locating the centroids of all vortices of each measurement plane.

5.1. Spanwise variations in the Kármán vortices

In the present study, the cylinder’s maximum deflection angle was less than 1.5◦,
and the response characteristics resemble those of elastically mounted cylinders. As
discussed in Dong et al. (2006), it is permissible to model the VIV for this structure
using a two-dimensional flow assumption. In reality, however, it is intuitively obvious
that the local cylinder displacement increases linearly in the positive z-direction. It
is therefore quite possible that spanwise variations (or three-dimensional flows) may
be induced by the inverted pendulum-like motion. The focus of this section is on the
answer to that question.

To explore spanwise flow variations, LIF studies were conducted in horizontal
planes at various locations along the cylinder span. In addition to the LIF sequences
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Figure 12. Three instantaneous LIF flow visualization images showing flow patterns behind
the cylinder at the same relative location in a beat cycle. Flow is left to right with the reduced
velocity set at 4.9. (a) z/D = −2.6; (b) z/D = −14.6; (c) z/D = −26.6.

acquired at the cylinder mid-height, z/D = −14.6, visualizations were also performed
toward the top of cylinder, z/D = −2.6, close to the free-surface, and at the bottom
z/D = −26.6, near the leaf spring. These studies were conducted at a single flow
speed, U ∗ = 4.9. Figure 12 includes single still images from each location with figures
12(a), 12(b) and 12(c), corresponding to z/D = −2.6, –14.6 and –22.6, respectively.
For publication cost reasons, these photographs have been reproduced in black and
white. Flow is left-to-right with the cylinder located on the left edge of each image.
Note that the images shown in figure 12 were taken at the same relative time in the
cylinder oscillation cycle.

If there were no significant three-dimensionality along the length of the cylinder,
the three photographs comprising figure 12 should look similar if not identical; recall
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that each photograph was taken at the same relative time in the oscillation and
beat periods. Comparison of the three images, however, reveals marked differences.
Figures 12(a) and 12(b) show distinctly separated regions of dye in the wake
indicating that dye has coalesced into Kármán vortex cores. In figure 12(c), however,
dye entrainment between vortices is clearly visible. DPIV measurements, presented
in Voorhees (2002), also confirm that vortex strength varies with depth; vorticity
increases approaching the free-surface where the local oscillation amplitude is greatest.

In addition, one can observe differences in wake width, or transverse vortex spacing,
between figures 12(a) and 12(b). In figure 12(a), where the Kármán vortices are closest
to the free-surface and the cylinder oscillation amplitude is greatest, the spanwise
separation (i.e. the vertical separation distance in the photographs) is correspondingly
the largest. For comparison, note that the cross-stream separation between successive
counter-rotating Kármán vortices in figure 12(b) is approximately half the separation
distance in figure 12(a).

Finally, it interesting to note that near the free-surface, z/D = −2.6, dye was
observed to both disappear and reappear from the image plane in a burst-like
manner. This was not observed farther away from the free-surface at z/D = −14.6
and –26.6. This cannot, of course, be seen in single still images, such as those shown
in figure 12. This observation came from examination of the video records directly.

The possibility that spanwise variations in vortex strength and spacing may be due
to amplitude-dependent mechanisms, such as cellular shedding, was considered. The
widely cited amplitude response plot first introduced in Williamson & Roshko (1988)
suggests that two modes of vortex shedding should exist along the span. Along the
lower part of the cylinder, one would observe the ‘2S’ mode, while ‘2P’ would occur
closer to the free-surface. The demarcation point would be located where the local
dimensionless oscillation amplitude, A∗, was 0.5. Note that for the present study, the
local value of A∗ where the cylinder crossed the free surface was 0.8. However, food
colour injected from the dye slots at different cylinder heights did not reveal evidence
of spanwise cells; it was possible to visually track dye as it was pumped up (and
down) in the Kármán vortex cores. This is described in greater detail in the following
section. In addition, both the DPIV data and the flow visualization studies indicate
that only the ‘2S’ mode exists along the entire span. The origins of the spanwise
variations are therefore more complicated than simple variations in local oscillation
amplitude. This is a significant point of difference between the inverted pendulum of
the present study and two-dimensional elastically mounted cylinder experiments.

5.2. Axial flows along the Kármán vortices

The logical next step was to directly quantify/verify the existence of three-dimensional
flows induced by the pendulum-like motion of the cylinder. At the outset, it would
be instructive to conduct a thought experiment regarding the nature of axial flows
one might expect to be associated with vortices shed from an inverted pendulum.
Both visual and quantitative evidence indicated that the local vorticity magnitude,
ωz(z), increases along the axis of any given Kármán vortex, beginning at the pinned
end and approaching the free-surface. This is a direct result of the increase in local
oscillation amplitude in the positive z-direction. Because ∂ωz/∂z > 0, one would
expect a concomitant negative pressure gradient, ∂p/∂z < 0, which would pump fluid
upward toward the free end of the cylinder. This axial flow would necessarily have
to be disrupted, however, by the free-surface. It is difficult to predict the effect of the
free-surface on the axial flows.
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Very strong upward flows associated with the Kármán vortices were indeed
observed when food colour was injected at the cylinder mid-height and close to
the pivot point, z/D = −14.6 and –26.6, respectively. The strength of the upflows
varied through the cylinder beating cycle. The most energetic upflows transported
dye several cylinder diameters above the dye injection plane within only a few
vortex rotation periods. However, no downflows were observed at these visualization
locations.

In contrast, dye injected from the upper location at z/D = −2.6 was observed to be
ejected both toward and away from the free-surface. In addition, periods of upflows
and downflows appeared to alternate in a quasi-periodic behaviour that was correlated
with the beat cycle. By superposing an oscilloscope trace showing instantaneous
cylinder position onto the flow visualization video signal, direct correlation of up-
and downflows with the beat cycle could be achieved.

Correlation was done by first classifying the beat cycle into four regions: peak,
trough, increasing amplitude, and decreasing amplitude. The next step was to define an
indicator function, Φ , such that Φ = −1 and +1 for downflow and upflow respectively.
If no significant vertical flow was observed Φ was set to zero. Ensemble averages of
Φ were generated for each of the four regions using an ensemble of 40 beat cycles.
Each ensemble average, 〈Φ〉, represents the probability that an up- (or down-) flow
would occur in each of the four regions of the beat cycle.

The results of this analysis are presented in figure 13. There are two parts to this
figur: (a) shows cylinder displacement versus time for one beating cycle; (b) shows
the type of axial flows observed at each beating cycle location. The four regions in
the upper plot have been numbered (i) to (iv) corresponding to peak, decreasing
amplitude, trough, and increasing amplitude. The ordinate of the lower plot is 〈Φ〉
for each region (i) to (iv). Error bars represent the r.m.s. of 〈Φ〉. Figure 13 clearly
indicates that upflows are associated with increasing amplitude while downflows are
associated with decreasing amplitude. In addition, on average, no axial flows occur
in the peak or trough regions of the beat cycle.

To further quantify these axial flows, end-view (y, z-plane) DPIV measurements
we re conducted at the locations shown in figure 11. Figure 14 shows a sequence of
six instantaneous velocity vector fields measured at the mid-height plane, which is
centred at (x/D, y/D, z/D) = (2.0, 0, –14.6). The time between successive frames is
0.067 s. The sequence in figure 14 shows the passage of a counter-clockwise rotating
vortex, i.e. positive sign vorticity, through the measurement plane. Notice that the
vector plots are shifted slightly left of centre to focus on this vortex; y/D = 0 is the
wake centreline.

By way of orientation, consider a positive-sign, vertical vortex (+ωz) carried in the
x-direction through a vertical measurement (y, z)-plane. As the vortex approaches
the measurement plane, the circumferential velocities would appear as a vertical
band of horizontal velocities oriented in the positive y-direction. When the vortex is
centred on the measurement plane, the circumferential velocities will be normal to
the measurement plane. Flow will be into and out of the page to the right and left
of the vortex axis, respectively. After the vortex centre has moved downstream of the
measurement plane, the circumferential flow will change direction and go from right
to left.

This global motion is clearly evident in figure 14. As the vortex begins to move
through the measurement plane, x/D = 2.0, one can see a vertical band of velocity
vectors, between y/D ≈ −1.5 and y/D ≈ + 0.5, pointing principally in the positive
y-direction. This can be seen in figure 14(a–c), most strongly in figure 14(c). And
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Figure 13. Mean indicator values for vortex axial flow direction, 〈Φ〉, as a function of
temporal location in the cylinder beating cycle. Positive and negative values of 〈Φ〉 signify
upward and downward flows, to and from the free surface, respectively. Data were taken using
side-view food-colour flow visualization video sequences where dye was injected at z/D = −2.6.

(a) Cylinder displacement versus time for one beating cycle. (b) Type of axial flow
observed.

after the core passes through the plane, figures 14(e, f ), the direction of the cross-flow
reverses, pointing in the negative y-direction.

It appears that in figure 14(d) the Kármán vortex core is roughly centred front-to-
back on the measurement plane. This is evidenced by the lack of cross-stream flow in
either direction. The salient feature of this particular vector field, then, is the strong
organized upward motion toward the free-surface. It is believed that these motions are,
in part, responsible for the energetic up-welling and down-welling motions observed
in the food colour visualization studies.

Embedded in each of the vector fields comprising figure 14 are smaller-scale turbu-
lent motions. Notice for example the counter-rotating vortex pair in figure 14(a − c)
centred at (y/D, z/D) ≈ (0, –13.6). This is an example of ‘Bloor’ vortices discussed in
Wei & Smith (1986); they are clearly visible in the LIF photographs in figure 14(c).
Wei & Smith (1986) determined that Bloor vortices develop spanwise waviness and
are stretched and reoriented into the stream direction.

5.3. Space–time evolution of three-dimensional Kármán vortices

A compact and insightful way to examine the aggregate of DPIV sequences is
to plot the data using space–time coordinates. This was done by tracking the
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Figure 14. Sequence of six consecutive DPIV vector fields in a cross-stream plane located at
x/D = 2 and z/D = −14.6. The mean flow is out of the page. y/D = 0 denotes the cylinder
rest position in the cross-stream direction. Time between successive vector fields in 1/15 s. The
sequence shows the passage of a Kármán vortex through the measurement plane. Note the
change in cross-stream flow direction as the vortex approaches and then passes. Also note the
upflow in the vortex core

.
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temporal evolution of fluid quantities along a line defined by the intersection of
phase-averged horizontal, x, y, and end-view, y, z, DPIV sequences. Simultaneously
plotting transverse, y, distributions of both axial vorticity, ωz, and axial or free–
surface normal velocity, uz, at each time in the phase-averaged sequence resulted
contour plots like those shown in figure 15. For the complete set of space–time plots,
see Voorhees (2002).

Lines in figure 15 show contours of constant axial vorticity. Solid lines indicate
positive vorticity while dotted lines denote negative values. Non-dimensional vorticity
magnitudes, ωzD/U∞, are provided on the contour labels. The contours show the
direction and magnitude of axial flows at each transverse location and time. Vertical
velocity magnitudes have been non-dimensionalized by free-stream speed. White and
dark grey contour levels indicate upflows and downflows, respectively. Observe that
the maximum magnitudes exceed 25% of the free stream. It is also important to note
that time has been reversed in figure 15 to give the effect of flow moving from left to
right. The oldest eddies, shed at t∗ = 0, appear on the right of the plot, while eddies
shed most recently, t∗ ≈ 12, appear on the left. Also recall that y/D = 0 is defined to
be the wake centreline or the rest position of the cylinder axis.

Figure 15 shows the space–time evolution of axial vorticity and axial flow along
horizontal lines at x/D = 3.0 for four different depths below the free surface, z/D = −
1.0, −2.0, −4.0 and −14.6. The three important features to compare between plots
at different depths are transverse vortex spacing, modulation of wake width, and
direction and magnitude of axial flows. In the first instance, examination of iso-
vorticity contours with increasing distance from the free-surface reveals that wake
width decreases significantly with depth. This is most pronounced within six diameters
of the free-surface as will be discussed later. Closest to the free-surface, z/D = −1.0,
opposite-sign vortices are 3–4 cylinder diameters apart. At the cylinder mid-height,
however, figure 16(d), the maximum transverse vortex separation is only one diameter.

The second important feature in figure 15 is the modulation in wake width as
a function of distance from the free-surface. The strongest modulation appears to
be located at z/D = −4.0, seen in figure 15(c). Note that this is also the location
where the strongest downward axial flows were observed. Closest to the free surface,
however, the wake width appears to be relatively constant.

Finally, consider the magnitude and direction of axial flows along the cylinder span.
Figure 15(a) shows the phase-averaged evolution of vertical flows closest to the free
surface. Note that vertical flows are predominantly toward the free surface with the
strongest upflows being closely associated with the Kármán vortex cores. However,
it is interesting to note that significant axial flows are also observed across the wake.
These are reminiscent of free-surface ‘scars’ between counter-rotating surface-parallel
vortices described by Sarpkaya & Henderson (1985) and Hirsa & Willmarth (1994).
However, the features in the present experiments are principally directed upward
toward the free surface, while ‘scars’ arise from sub-surface transverse vortices which
transport fluid both to and from the surface.

Only one diameter farther below the surface, at z/D = −2.0, there is an equal
probability of detecting upflows or downflows. It can also be seen that upflows and
downflows appear in tandem, with an upflow occurring before, i.e. downstream, of a
downflow. This is physically consistent with the observation that Kármán vortices lean
outward away from the wake centre near the free-surface. Given the sign of rotation
of the vortices, the outward lean would give rise to upflow on the downstream, leading
side of the vortex and downflows would be observed on the upstream, trailing side.
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Figure 15(a, b). For caption see facing page.

At the cylinder mid-height, figure 16(d), vertical motions are primarily directed
up toward the free-surface. This is consistent with the thought experiment presented
earlier anticipating that axial flows would be induced by pressure gradients toward the
free end of the pendulum. It is also in agreement with the food-colour visualization
studies indicating that only upward flows were observed at the cylinder bottom and
mid-height.
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Figure 15. Space–time contour plots showing the correlation between vortex shedding and
vertical flows for four different depths below the free surface. The ordinate is cross-stream
position non-dimensionalized by cylinder diameter. Dimensionless time appears as the abscissa.
Plots were obtained using vertical cross-stream DPIV measurements at x/D = 3.0 at four
different depths: (a) z/D = −1.0; (b) z/D = −2.0; (c) z/D = −4.0; (d) z/D = –14.6. Note the
variation and modulation in wake width along with direction and magnitude of vertical flows
as a function of depth. Lines show contours of contant axial vorticity (solid, positive; dotted,
negative).
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Figure 16. Orthographic projections of reconstructed phase-averaged vortex cores for a pair
of Kármán vortices shed during (a) the decreasing portion of the cylinder beat cycle at
t∗ = 1.24; (b) the trough or minimum amplitude portion of the cylinder beat cycle at t∗ = 4.36;
(c) the increasing portion of the cylinder beat cycle at t∗ =8.50.

The results presented thus far clearly demonstrate the existence of axial flows
with magnitudes in excess of 25% of U∞. In addition, the vortices are significantly
distorted close to the free-surface. To better visualize the effect of the free surface
on the Kármán vortices, three-dimensional reconstruction of the vortex cores was
done using the plan-view DPIV measurements. Vortices were tracked in six of the
horizontal image planes at three different times in the phase-averaged beat cycle
corresponding to decreasing amplitude, trough, and increasing amplitude. The vortex
tracking algorithm was briefly described at the beginning of this section. The plane
closest to the free-surface, z/D = 0.5, was not used.

For each frame, the geometric centres of a pair of opposite-sign vortices were
located. Orthographic projections of the reconstructed Kármán vortices made for
decreasing amplitude, trough, and increasing amplitude are shown in figures 16(a),
16(b), and 16(c), respectively. To facilitate interpretation of the reconstructed vortices,
particularly for the top-view projections, the vortex centre measurement at z/D = −1.0
is identified by an open circle. The vortex measurement from the plane closest to the
cylinder base, z/D = −26.6, is indicated by a solid black circle. Measurements in the
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intermediate planes are not individually discriminated; they are shown as small black
points. In each figure, the positive-sign (counter-clockwise) vortex, indicated with a
dashed line, was shed before the negative-sign (clockwise) vortex, shown as a solid line.

There are a number of features of the three reconstructed vortices that are common
to each of figures 16(a)–16(c). First, the wakes become wider on approaching the free-
surface. This is clearly evident in the end-views of the three reconstructed vortices
and is consistent with the space–time plots shown in figure 15. In addition, the
portion of each Kármán vortex closest the bottom of the cylinder is ahead, i.e.
downstream, of the vortex elements shed at the mid-height. This can be attributed
to the longer formation length associated with small oscillation amplitudes. Finally,
moving upward from the cylinder mid-height, z/D = −14.6 toward the free surface,
the vortex leans downstream and away from the wake centreline. In brief, the most
important similarity in figures 16(a)–16(c) is the high degree of curvature of the
Kármán vortices, particularly close to the free surface.

It is the differences in curvature, however, which provide insight into the difference in
vertical flows at different times in the oscillation beat cycle. This is particularly true in
comparing vortex conformation for decreasing amplitude, figure 16(a), and increasing
amplitude, figure 16(c). Compare, for example, the side-view projections. Observe that
for the increasing amplitude case, figure 16(c), the Kármán vortices continue to lean
forward on approaching the free surface. In contrast, for the decreasing amplitude
case, figure 16(a), very close to the free surface, the vortices turn back downstream.
Similarly, examination of the end-views in figures 16(a) and 16(c) indicates that for
the decreasing amplitude portion of the beat cycle, the uppermost part of the Kármán
vortices bends back toward the wake centreline, whereas the outward lateral spreading
continues in the increasing amplitude case.

These differences in curvature close to the free surface provide insight into
differences in vertical flows observed at different times in the cylinder beat cycle.
If the vortex is leaning (as it clearly is), the circumferential flow around the vortex
core will have a vertical component. Thus, as was seen in figure 15, there are places
where up- and downflows may be found on either side of the vortex cores.

In addition, the degree of lateral spreading at the free surface will also have an
effect on the axial pressure gradient within the vortex cores. As discussed in Hsu
et al. (2000), free surfaces cause lateral spreading of near-surface turbulence and an
attenuation of turbulent motions. Contour levels in figure 15 indicate that vorticity
in the Kármán vortices may decrease very close to the free surface. This weakening
would result in a reversal of the axial pressure gradient, causing near-surface fluid to
be pumped downward away from the free surface. In summary then, the axial flows
observed in the inverted pendulum cylinder experiment are due to a combination of
axial pressure gradients and vortex curvature.

6. Conclusions
Vortex-induced vibration of a circular cylinder, mounted as an inverted pendulum,

was investigated using two-colour flow visualization and DPIV measurement
techniques. The response characteristics of the pendulum were observed to closely
resemble those of elastically mounted cylinders with similar mass ratio and mass–
damping. A particular focus of this work was the onset and disappearance of quasi-
periodic beating of the cylinder in the upper branch or synchronization regime in
the frequency–amplitude response. Detailed analysis revealed a ∼ 0.1 Hz mismatch
between the Kármán vortex shedding and cylinder oscillation frequencies. At the
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same time, Kármán vortex strength modulates with time over the course of a phase-
averaged beat period. Quasi-periodic beating, therefore, arises as a combination of
frequency mismatch and modulated vortex strength. This beating behaviour naturally
ends after a few beat periods because of physical constraints associated with the
cylinder motion and vortex shedding.

The second focus of this study was the strong axial flows inside the Kármán
vortices. These were observed to be in excess of 25% of the free-stream velocity. In
general, the axial flows were toward the free surface in the direction of increasing
cylinder amplitude. The axial flows can be attributed in part to the effect of
linearly increasing oscillation amplitude along the span. Increased vortex strength
with increasing amplitude creates an axial pressure gradient inside the vortex cores
which pumps fluid toward the free-surface. Near the free surface, however, the axial
flows were markedly different. There was an equal probability of upflow and downflow.
Variations in upflow and downflow were correlated with the quasi-periodic beating of
the cylinder amplitude; upflows occur during the increasing amplitude portion of the
beat cycle while down flows occur during decreasing amplitude. The combined effects
of the inverted pendulum motion and the free surface resulted in three-dimensional
curvature of the Kármán vortices. The shape of the vortices also varied as a function
of relative time within the cylinder beating cycle. It was hypothesized, in conclusion,
that the effect of the free surface was to disrupt the axial pressure gradient which
drove the primary up flow mechanism and also to induce lateral spreading/leaning of
the top portions of the Kármán vortices. The combination of upflows and downflows
close to the surface was probably a result of the fact that the Kármán vortices were
not orthogonal to the free surface, except perhaps only at the free surface.
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in setting up the cylinder position sensor. Additionally, the authors would like
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particularly regarding the space–time analysis of the vertical motions. We also
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